If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+24x-1=0
a = 24; b = 24; c = -1;
Δ = b2-4ac
Δ = 242-4·24·(-1)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{42}}{2*24}=\frac{-24-4\sqrt{42}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{42}}{2*24}=\frac{-24+4\sqrt{42}}{48} $
| 3(v+6)+1=1 | | -15/8=-5w | | 5x-8=2x+4x | | 4x-2-2x-3=0 | | 8b–3b=10 | | 2h–4=h | | 10x+1=3x | | 1/2(x+1)+1=-2 | | 3(q+1)+4=19 | | -1.4x=24.36 | | 2x-3/4+x=2x+3/2+1 | | -3(4w-6)+8w=6+2(5w-2) | | 8x-15+x=180 | | w/3=45 | | 38=8k+32-7k | | 1+X=x^2 | | 3=14-2h | | 5x=8(5x-3x)-4 | | (3r+1)2+(r+2)2=45 | | 1/2(x+1)-2=-1 | | -6=3/8y | | X/3+4/9=2x/3-1 | | (5/2)t–t=3+(3/2)t | | -3/4w=0 | | 4m+11m+2m+18=-16 | | 5a-a-2a=17 | | (y-3)+2y=y-3/5 | | 5/2t–t=3+3/2t | | 3n-5=-8(5+5n) | | 49000/x-4=(4900/x)+1400 | | -9x-5x+7-3=-6x-5x+7 | | 4p-3=(p=4) |